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The development of the Reynolds stress field was studied for flows in which an 
initially two-dimensional boundary layer was skewed sideways by a spanwise 
pressure gradient ahead of an upstream-facing wedge. Two different wedges were 
used, providing a variation in the boundary-layer skewing. Measurements of all 
components of the Reynolds stress tensor and all ten triple products were measured 
using a rotatable cross-wire anemometer. The results show the expected lag of the 
shear stress vector behind the strain rate. Comparison of the two present experiments 
with previous data suggests that the lag can be estimated if the radius of curvature 
of the free-stream streamline is known. The magnitude of the shear stress vector in 
the plane of the wall is seen to decrease rapidly as the boundary-layer skewing 
increases. The amount of decrease is apparently related to the skewing angle between 
the wall and the free stream. The triple products evolve rapidly and profiles in the 
three-dimensional boundary layer are considerably different than two-dimensional 
profiles, leaving little hope for gradient transport models for the Reynolds stresses. 
The simplified model presented by Rotta (1979) performs reasonably well providing 
that an appropriate value of the T-parameter is chosen. 

1. Introduction 
Three-dimensional turbulent boundary layers in which there are significant 

normal gradients of both the streamwise and spanwise velocity components are 
much more common in practice than the classical two-dimensional boundary layer. 
A simple but commonly occurring three-dimensional one is an initially two- 
dimensional boundary layer which is deflected by a spanwise pressure gradient. The 
low-momentum flow adjacent to the wall is deflected to a greater angle than is the 
free stream, resulting in the characteristic velocity profiles shown in figure 1. 

For moderate pressure gradients, the three-dimensional boundary layer remains 
attached and the streamwise and spanwise vorticity components are dominated by 
dW/dy and dU/dy respectively. (We shall use the convention that x, y,z are the 
streamwise, normal and spanwise directions, respectively. The associated velocity 
components are u, v and w. Capital letters refer to time-averaged quantiies and 
primes refer to fluctuating quantities. The coordinate system is fixed relative to the 
laboratory and the initially two-dimensional layer.) The primary function of a 
turbulence model in such flows is to predict the magnitude and direction of the shear 
stress vector in planes parallel to the wall. This vector (subsequently called 'shear 
stress vector'), which is composed of the UI'UI and shear stress components, 
governs the boundary-layer development. Most current computational methods 
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FIGURE 1 .  Characteristic velocity profile shape of a pressure-driven three-dimensional 
boundary layer. 

assume an isotropic eddy viscosity and use slightly modified two-dimensional models 
to predict the eddy viscosity. Such assumptions are not in accord with the data, 
which show that the shear stress vector is rarely aligned with the strain rate. Some 
recent work following Rotta (1979) has attempted to remedy this with only partial 
success (see the more complete discussion below). 

One of the problems in developing models for three-dimensional turbulent 
boundary layers is that the turbulence may be strongly distorted by the extra strain 
rate dW/dy. For example, Bradshaw & Pontikos (1985) found that the ratio of shear 
stress magnitude to turbulent kinetic energy in a three-dimensional boundary layer 
fell to around one half of the value typical of two-dimensional boundary layers. 
There are a t  least three effects responsible for changing the turbulence structure. 
First, the additional strain rate dW/dy distorts the existing turbulence structure. 
Secondly, new production terms appear in the Reynolds stress transport equations 
when the extra strain rate is applied. Finally, the boundary conditions are changing. 
For example, in a flow which is turning monotonically, the skin friction vector 
rotates continuously. 

Townsend (1980) (see also Savill 1987) suggested that modifications to shear-flow 
turbulence by extra strain rates can be predicted using rapid distortion theory, 
reasoning that the extra production terms are usually insignificant. The available 
data indicate that the distortion of the turbulence structure is indeed an important 
effect. However, the distortions applied in most three-dimensional turbulent 
boundary layers are not truly rapid and both the second and third effects mentioned 
above may be important. 

The fact that the directions of the shear stress and strain rate vectors differ 
substantially in three-dimensional turbulent boundary layers suggests that a 
turbulence model based on the Reynolds stress transport equations is needed. 
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However, the distortion of the turbulence by the extra strain rate would appear in 
the pressure-rate-of-strain correlation. This term in the equations is not measurable 
a t  present, so, modellers will have little support from experiments. 

Relatively simple models for the shear stress magnitude and direction are needed. 
The development of such models will require more experimental data than currently 
exists. Data are needed that show the development of the shear stress vector over a 
wide range of conditions. There are relatively few good data sets available, largely 
owing to the difficulties encountered in measuring all components of the Reynolds 
stress tensor, particularly the v” shear stress. Hot-wire techniques for the 
measurement of shear stresses require considerable care. Most investigators have 
used cross-wire anemometers which require a subtraction of two large numbers to 
obtain the relatively small stress. Triple-wire techniques are under development 
(Moffatt, Yavuzkurt & Crawford 1979 ; Muller 1987) but successful measurements of 
the full stress tensor are yet to be demonstrated. Accurate measurement of the shear 
stresses, particularly has proved to be very difficult using laser Doppler 
anemometer (LDA) techniques in air flow facilities (Driver & Hebbar 1985). Pulsed- 
wire techniques for measurement of the full stress tensor have only recently been 
developed (Castro & Cheun 1982) and pulsed-wire probes usually do not have 
sufficient resolution for attached-boundary-layer studies. 

An extensive review of previous experimental studies of subsonic three- 
dimensional turbulent boundary layers is contained in Anderson & Eaton (1987). 
Relatively few data sets contain the detailed and accurate Reynolds stress data 
needed for model development. The simplest experiments are the ‘infinite swept 
wing’ experiments of van den Berg, Elsenaar & Lindhout (1975) and Bradshaw & 
Pontikos (1985). The shear stress vector was found to lag behind the strain rate 
vector and the aforementioned drop in the shear stress/kinetic energy ratio was 
observed. Johnston (1970) examining an infinite swept forward-facing step flow 
observed a dramatic lag of the shear vector. Johnston’s general conclusions were 
supported by the later work of East & Sawyer (1979). 

Experiments in somewhat more complicated geomet,ries have arrived at different 
conclusions. For example, Ezekwe Pierce & McAllister (1978), Fernholz & Vagt 
(1981), and Muller (1982) have all observed a lead in the shear stress vector ahead of 
the strain rate. Fernholz & Vagt (1981) concluded that this was caused by very rapid 
distortions of the turbulence. Van den Berg (1982) observed, though, that this lead 
only appeared in boundary layers approaching separation. 

Variation of the experimental parameters using a fixed facility and measurement 
techniques will be very useful for understanding which system parameters control 
the development of the Reynolds stresses. All of the experiments mentioned above 
are single-configuration experiments, that is there has been no variation of the 
experimental parameters. The lone exception is a series of experiments conducted by 
Professor Bradshaw’s group at Imperial College on infinite-swept-wing flows with 
varying longitudinal curvature (Bradshaw & Pontikos 1985 ; Baskaran & Bradshaw 
1987a). They found that many of the most important effects of mean flow three- 
dimensionality were unchanged by longitudinal curvature. 

The objective of the present set of experiments was to examine the development 
of the Reynolds stresses in an initially two-dimensional boundary layer driven to 
three-dimensionality by a spanwise pressure gradient. A single-parameter experi- 
ment was desired in which the ratio of the spanwise to the streamwise pressure 
gradient could be varied. This objective was partially met using the geometry 
sketched in figure 2. A two-dimensional boundary layer is deflected sideways by the 
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FIGURE 2. Sketch of test-section geometry. 

pressure field set up by the wedge and fairings. The pressure field can be changed by 
varying the angle of the wedge and the posit,ion of the fairings. 

The present paper focuses on the development of the Reynolds stresses as a 
perturbation from a two-dimensional boundary-layer state. Reynolds stress data 
from the two present experiments will be compared to  each other and earlier data in 
an effort to determine the governing parameters for the Reynolds stress development. 
Some triple-product data will also be shown, mostly as a warning to Reynolds stress 
modellers. A full report (Anderson & Eaton 1987) provides a complete description of 
the experimental techniques as well as the extensive documentation of the mean flow 
field required for use of the data as a computational test case. All data presented here 
and in the full report are available on magnetic tape from the second author. 

2. Equipment and techniques 
The experiments were conducted in a three-dimensional test duct mounted on the 

end of a two-dimensional development section. The test duct consisted of two plane 
parallel walls separated by 11.9 cm and the wedge and fairings sketched in figure 2. 
The pressure field which drove the three-dimensionality was generated by the 
symmetrical wedge facing into the flow. Two different wedges were used; a 90" 
inclined angle wedge for Case I and a 60" inclined angle wedge for Case 11. The 
pressure field was also affected by the position of two flexible fairings extending 
downstream from the development-section endwalls. The position of the fairings was 
selected to ensure a favourable pressure gradient and therefore thin boundary layers 
along the entire length of the fairing. The fairings were positioned using a template, 
resulting in a pressure field which was symmetrical about the centreline to within the 
measurement uncertainty. Repeated flow visualizations using a smoke wire upstream 
of the stagnation point showed that the free-stream flow was steady. 

The inlet flow to the three-dimensional test section was supplied by a two- 
dimensional blower-driven wind tunnel with a 12.7 cm x 61 cm rectangular test 
section (Eibeck & Eaton 1985). The boundary layer of interest developed over a 
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length of 210 cm on one of the 61 cm walls of the test section. At the inlet to the 
three-dimensional test section the boundary layer was two-dimensional with the 
following integral parameters: S,, = 3.12 cm, 8 = 0.36 cm, H = 1.35, C, = 0.0032 
and momentum thickness Reynolds number = 3750 a t  16.3 m/s free-stream velocity. 
The boundary layer on the wall opposite the test wall was removed using a scoop, 
reducing the test section depth to 11.9 cm. The free-stream turbulence level was 
approximately 0.2 YO. 

The U- and W-mean velocity components were measured using a three-hole yaw 
probe which was fabricated from 0.8 mm OD round hypodermic tubing. The side 
tubes were cut a t  a chamfer angle of 40" relative to the probe tip axis following the 
recommendation of Bryer & Pankhurst (1971). The probe was calibrated to measure 
both the velocity magnitude and the flow angle without nulling the probe to 
determine the flow angle. The calibration was performed for a yaw angle range of 
f 30". The probe was aligned approximately with the flow so that the measured flow 
angle was always within the range f 25". A Young & Mass (1936)-type correction as 
implemented by Eibeck & Eaton (1985) was used to find an effective location of the 
probe tip based on the measured velocity gradient. 

The six components of the Reynolds stress tensor, the ten triple products, and 
redundant measurements of the mean velocity components were measured using a 
conventional X-array hot-wire probe. The probe was a DISA 55-P-51 dual sensor tip 
having 3 mm long, 5 vm diameter wires. The wires were mounted with a spacing of 
1 mm. Each wire was gold plated at the ends to achieve an active length of 1.25 mm. 
The probe was connected to two Precision Measurement Engineering Model 108 
constant-temperature anemometers operating a t  a resistance ratio of 1.8. The bridge 
control circuit was balanced to give a system frequency response of 35 kHz. Each 
bridge output signal was low-pass filtered (Frequency Devices Model 901F) with a 
cutoff frequency of 20 Hz. The DC bias was removed and the signal amplified using 
a Precision Measurement Engineering Model 107 Buck and Gain. The filtered and 
amplified signal was then passed to the data acquisition system for digitization with 
12 -bit resolution. 

The measured voltages from the hot-wire probe were interpreted assuming a 
' cosine-law ' response and neglecting the velocity component perpendicular to the 
plane of the wires. To minimize the uncertainty, the probe axis was aligned with the 
previously measured mean flow direction at each measurement point. Data were 
acquired in each of four different positions, the ( U ,  V)-plane, the ( U ,  W)-plane, and 
two 45" planes. The latter two positions were used only to measure quantities 
involving both v- and w-component fluctuations, namely v'w', vf2w', v'wf2, and 
U'V'W'. 

The probe was calibrated in the free stream to determine the coefficients of a 
King's law response equation and the effective angle of the wires in each plane. The 
calibration was done under computer control and followed the technique outlined by 
Westphal & Mehta (1984). Calibrations were performed before and after each profile 
and the data discarded if the calibration changed by more than 1 YO. The flow 
temperature was measured before and after each measurement point and the 
Bearman (1971) temperature correction applied to each of the measured hot-wire 
voltages. 

Uncertainties in cross-wire measurements arise from a variety of sources including 
the finite probe size, non-cosine response behaviour, out-of-plane velocity com- 
ponents, temperature drift, and calibration inaccuracies. The latter two uncertainty 
sources were minimized in the present experiment by frequent and automatic 

- _ _ -  
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recalibration. A complete analysis of the other uncertainty sources is difficult 
because of the anisotropic nature of boundary-layer turbulence. Estimates of the 
uncertainties due to the calibration and data reduction procedure and deviations 
from cosine-law response were reported in Anderson &. Eaton (1987). The uncertainty 
in the mean velocity components was estimated as less than 2 YO of the local value 
of U. This estimate was supported by comparisons to the three-hole-probe data at 
over 1000 measurement points. The worst deviation between the two measurement 
techniques was 1.8 YO, with the typical deviation being about 1 YO. 

The uncertainty in the normal stresses was estimated to be 4 %  of p. This 
estimate was supported by comparisons of data measured in the upstream boundary 
layer to the data of Klebanoff (1954) and Purtell, Klebanoff & Buckley (1982). 
Agreement of all three normal stresses was excellent outside y/6 = 0.1. Inside this 
location, finite-probe-volume effects clearly become important. The active length of 
each wire was 2.6 % of the upstream boundary-layer thickness or approximately 50 
viscous wall units. This length would be expected to cause some attenuation of the 
normal stresses near the wall (Johansson & Alfredsson 1983). The finite separation 
of the wires (2  % of the upstream boundary-layer thickness) causes a ‘cross-talk’ 
effect, increasing the measured value of near the wall (Nakayama & Westphal 
1986). Our dimensionless wire length and spacing was similar to Nakayama and 
Westphal’s Case 0, which apparently had relatively small cross- talk. 

The estimate of uncertainty in the shear stress measurements was 8 YO of the local 
value of outside y/6 = 0.1. The uncertainty apparently increased rapidly 
approaching the wall. Measurements of in the two-dimensional boundary layer 
were compared to the data of Klebanoff (1954) showing excellent agreement. In  a 
more recent test Pauley &, Eaton (1988), using the same flow and hot-wire system, 
compared shear stress and triple product measurements with those reported by 
Murlis, Tsai & Bradshaw (1982) measured at the same Reynolds number. The shear 
stresses agreed within a few percent across the entire boundary layer. Agreement of 
the triple products was also excellent outside y/S = 0.2. The general reliability of the 
shear stress measurements is also illustrated by the fact that the shear stress 
extrapolates well to the wall shear stress value for all profiles shown below. 

are particularly sensitive to the 
out-of-plane velocity components. The probe was aligned with the mean velocity 
vector to within lo at  every measurement point to minimize this source of 
uncertainty. Alignment of the probe also minimized uncertainty due to flow 
interference by the prongs. This effect cannot be completely eliminated in a three- 
dimensional boundary layer, but was probably small since plated wires were used. 

Measurement bias is caused by the difference in the height of the wires above the 
wall when the probe is positioned in the (U,  W)-plane (wires parallel to the wall). For 
example, a normal gradient of the axial mean velocity component produces a signal 
which is interpreted as a positive spanwise velocity component. Similar biases are 
present in the measurement of and m. The bias is not an uncertainty in the 
strict sense and could potentially be corrected. However, the uncertainty in the bias 
correction is large so we chose to  ignore it. Analysis of the mean velocity gradients 
indicates that the bias is small for measurement locations outside Y = 3 mm 

Both of the probes described as well as a static pressure probe were positioned 
using a two-axis computer-controlled traverse which had an accuracy of 0.003 mm 
in y and 0.006 mm in z. The traverse also had the capability to  rotate (yaw) the 
probes about the normal (y) axis. All probes were mounted on gooseneck stems so 

Measurements of the secondary shear stress 

(y/6 = 0.1). 
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that they could be yawed without translating the probe tip. The probes were inserted 
through slots a t  stations 1-5, labelled S 1-S 5 on figure 2. The slots were sealed with 
foam tape when a probe was in place and by a flush fitting plug at  other times. 

The skin friction vector was measured using a dual-fence probe described by 
Higuchi (1983). The height of the fence was 0.12 mm, which corresponded to 5 wall 
units in the upstream boundary layer. The gauge was calibrated in the two- 
dimensional inlet boundary layer over a range of free-stream velocites. A two-step 
measurement procedure was used in which the skin friction vector angle was first 
determined. The probe was then rotated so that one fence was normal to the skin 
friction for accurate determination of the vector magnitude, The uncertainty of this 
technique was estimated to be f 3" for the skin friction angle and f 5  70 for the 
magnitude. Measurements were only possible for Case I because special port holes 
drilled in the test wall were required. 

Experimental control and data acquisition was done by a DEC MINC 
microcomputer system which digitized all analog signals with 12-bit resolution. 
Pressure probe data were processed online. Raw hot-wire voltages were recorded on 
floppy disk and post-processed on a VAX 11/750 microcomputer. 

3. Results and discussion 
The results presented below are normalized by a reference velocity and pressure, 

respectively the free-stream velocity and static pressure on the tunnel centreline a t  
the first measurement station (x = 7.6 em, z = 0). The coordinate system used is 
usually the 'wind-tunnel coordinates' shown on figure 2. Coordinate values are not 
normalized because there is no consistent normalization for three-dimensional 
boundary layers and the normalization loses information about boundary-layer 
growth. 

The free-stream static pressure distributions for the two cases with different wedge 
angle are shown in figures 3 and 4. The pressure coefficient is referenced to the 
pressure on the centreline a t  the first x-station and normalized by the dynamic 
pressure a t  that  same location. In both cases there is a strong adverse pressure 
gradient on the centreline approaching the separation point upstream of the wedge. 
Off-centreline, the pressure gradient remains adverse through station S 4 then 
becomes favourable as the flow accelerates in the exit duct. A strong spanwise 
pressure gradient develops downstream of the first station and continues throughout 
the length of the test section. This spanwise pressure gradient causes the monotonic 
turning of the free stream and the secondary flow within the boundary layer. The 
main difference in the two pressure fields is that  the streamwise pressure rise is 
somewhat greater in Case I. This leads to a greater retardation of the boundary-layer 
flow and a larger skewing angle between the free stream and the flow near the 
wall. 

The overall development of the flow is best illustrated by mean velocity surveys 
which were measured using the three-hole probe. Spanwise surveys were made a t  five 
different y-locations for each of the seven x-stations. The free-stream plane and the 
plane nearest the wall ( y  = 0.19 em, y/S x 0.05) are shown for the two cases in figures 
5 and 6. In  each figure, the longer vectors represent the free-stream flow and the 
shorter, more skewed vectors represent the plane nearer the wall. The free stream is 
turned rapidly by the pressure gradient and the boundary-layer skewing develops 
quickly. By the fourth station, the skew angle between the wall and the free stream 
is greater than 30". The presence of a separation region in the vicinity of the wedge 
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FIQURE 4. Static pressure coefficient for Case 11. Symbols as in figure 3. 
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FIGURE 6. Mean velocity in (5, +planes for Case 11. y-positions same as figure 5 .  

tip is obvious in the figures. It is also apparent from the figures and from three- 
component measurements not shown here that the flow at stations 6 and 7 is 
exceedingly complex. This downstream flow is a complex three-dimensional duct 
flow rather than a three-dimensional boundary layer. The downstream region will 
not be discussed further since the results are too complex to interpret in the present 
context. 

The flow along one free-stream streamline was selected for detailed examination in 
order to restrict the measurements to manageable proportions. Table 1 shows the 
x- and z-coordinates of the profile locations for each case. Detailed profiles were then 
measured a t  the intersection of the streamline with each measurement port. The 
selected streamline for Case I originates at z = 15 ern a t  the first x-station as shown 
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1 2 3 4 5 
..__ Station 

X 7.6 22.9 38.1 45.7 53.3 
z 15.0 15.4 16.7 18.4 20.9 

Case I 

69, (cm) 3.15 3.55 3.84 4.08 4.16 

Case I1 
X 7.6 22.9 38.1 45.7 53.3 
z 10.0 10.1 10.6 11.7 13.6 
69, (cm) 3.61 3.82 4.02 4.22 3.96 

TABLE 1 .  Profile location on selected streamlines 

on figure 5. This streamline was selected because it passes through the region of 
strong boundary-layer skewing but is in a region of relatively small spanwise 
gradients. Therefore, the boundary layer should be reasonably representative of 
boundary layers in 'infinite-swept '-type flows and the interpretation of the data 
should be straightforward. The spanwise gradients of all of the stress components are 
quite small through the fourth measurement station. 

The approximation to infinite swept flow is not maintained through the fifth 
station. The reason for this is apparent in figure 7 which shows streamlines calculated 
from the mean velocity data a t  y = 0.7 cm ignoring any y-component of the velocity. 
The streamlines in this plane were selected for display since the peak in the turbulent 
kinetic energy profile occurs near y = 0.7 cm in the skewed boundary layer. The 
squares indicate the location of the profile measurements along the free-stream 
streamline. Figure 7 shows that flow arriving at the first four stations has developed 
in regions remote from the centreline. However, by station 5, the flow has come from 
regions very near the centreline where spanwise gradients may be large. Therefore, 
the turbulence a t  this station has developed in an entirely different type of straining 
field and is subject to the effects of spanwise divergence and longitudinal curvatsure. 
The large changes in the Reynolds stresses to be shown below are just an indication 
of the difference between different flow regions. 

The streamline selected for Case I1 originates a t  z = 10 cm in the two-dimensional 
boundary layer. This streamline was selected closer to the centreline so the rate of 
turning of the free-stream velocity vector is approximately the same. The pressure 
gradient along the streamline is somewhat weaker in the second case as shown in 
figure 8. The spanwise pressure gradient is initially weaker in Case I1 but becomes 
slightly stronger a t  stations 4 and 5.  The key difference between the two flows is in 
the amount of skewing between the free stream and the flow near the wall. Again, in 
Case I1 the profiles for stations 1 4  are approximately representative of infinite- 
swept-type flows while the flow a t  the fifth station is considerably more complex. 

Mean velocity profiles for the two cases are shown in figures 9 and 10. The 
boundary-layer development is indicated by the growth of S,, tabulated in table 1. 
The Case I profiles show a considerable retardation of the streamwise velocity 
component through the fourth measurement station with a corresponding rapid 
increase in the cross-stream velocity component. Profiles of the mean flow angle are 
plotted for Case I in figure 11 along with the measured wall angle. The skewing angle 
between the free stream and the wall increases rapidly to an angle of 45' by station 
4. The pressure gradient becomes favourable between the last two stations, leading 
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FIGURE 8. (a )  Streamwise and ( b )  spanwise pressure gradient a t  the profile locations: 
+ , Case I ; 0, Case 11. 
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FIGURE 9. Mean velocity profiles for Case I: +, S 1 ;  +, 5 2 ;  ., S 3 ;  0 ,  S 4 ;  A, S5. 

to the apparently anomalous behaviour in the inner region. The velocity profiles for 
Case I1 are only slightly retarded by the weaker pressure gradient. The skew angle 
is smaller but still quite significant. The wall angle is not available for Case 11, but 
based on the velocity data we estimate a total skewing angle between the free stream 
and the wall of approximately 35" at station 4. 

Profiles of all six components of the Reynolds stress tensor were measured at each 
station along the selected streamlines. The stresses are presented below in a 
coordinate system that is aligned with the wind-tunnel axis so that we can view the 
stress development as a perturbation of a two-dimensional boundary layer. The 
stresses are also normalized by a constant reference velocity, so the plots show 
absolute changes of the stress levels. Profiles a t  station 2 have been left out because 
they are only slightly different than the station 1 profiles and thus clutter the 

The turbulent kinetic energy profiles are shown in figure 12(a, b).  The kinetic 
energy profile develops a peak away from the wall following the characteristic 
development in adverse-pressure-gradient boundary layers. The peak level grows 
slowly between stations 1 and 4 and then rapidly to station 5. The rapid change is 
an indication that we have entered a different region in the flow moving from station 
4 to station 5 .  Detailed comparisons presented in Anderson & Eaton (1987) show that 
the data a t  station 5 compare well with the data of Dechow & Felsch (1977) and 

plots. 
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FIQURE 10. Mean velocity profiles for Case 11. Symbols as in figure 9. 

Muller (1982). Both of these flows are ‘obstacle-type’ flows where the initially two- 
dimensional boundary layer is deflected sideways by an obstacle. Such flows exhibit 
markedly different behaviour from the ‘ infinite-swept-wing ’ flows studied by 
Elsenaar & Boelsma (1974) and Bradshaw & Pontikos (1985). 
- The individual normal stress components are shown in figures 13-15. Both u ’ ~  and 
d2 develop a peak away from the wall which grows slowly to station 4 and then quite 
rapidly to station 5. The 2 profiles develop a different shape with a flat region 
adjacent to the wall which extends into the wake region. The levels of wf2 double 
between the 4th and 5th stations, emphasizing the strong differences between the 
flow regions. 

shear stress 
shows a development very similar to a two-dimensional adverse-pressure-gradient 
boundary layer in that the level near the wall falls rapidly in response to the 
decrease in the skin friction level. The skin friction was measured a t  each profile 
location for Case I and the streamwise component is indicated on the vertical axis of 
figure 16. It is apparent that the measured values asymptote to the local skin 
friction level. The inner layer of reduced shear stress grows outward, leaving a peak 
in the wake region of the boundary layer. The peak level in each profile remains 
approximately the same. The reduction in the shear stress is not as strong as in Case 
I1 which has a lower skewing angle and thus a higher streamwise component of the 

The three shear stress components are shown in figures 16-18. The 
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y (degrees) 

FIGURE 11. Mean flow angle relative t o  fixod -wind-tunnel’ coordinate system. Solid symbols on 
abscissa indicate measurements with surface-fence probe : + , S 1 ; 0, S 2 ; 0, S 3 ; A, S 4 ;  *, S 5 .  

skin friction. The peak value in each profile also occurs closer to the wall in Case 
11. 

shown in figure 17 is plotted on the 
same scale as to facilitate comparison between the shear stress components. The 
spanwise component has much lower levels than the streamwise shear stress a t  all 
stations even though normal velocity gradients of U and W are comparable. The 
cross-stream shear stress profiles exhibit thick ‘constant stress layers ’ at stations 3 
and 4 for both cases. The outer edge of the constant stress layer corresponds roughly 
to the location of the peak of the a profile. At station 5 ,  the profile is highly 
distorted with very low overall shear stress levels. The spanwise component of the 
skin friction is plotted on the left boundary of figure 17. The level of the shear stress 
in the constant stress layer is far below the skin friction, indicating that any analogy 
to the constant stress layer in a two-dimensional boundary layer is inappropriate. 
Very large gradients in the spanwise shear stress must exist below the lowest 
measurement point. It is not known if the ‘UIWI levels increase rapidly adjacent to the 
wall or if there is an unusually large viscous component of the shear stress. It will be 
shown below that the normal transport of the shear stress by turbulence is 
extremely rapid. This rapid transport is apparently responsible for the constant 
stress layer. It seems unlikely that a thin region of high could exist under these 
conditions. 

The spanwise shear stress profiles for Case I1 are very similar to Case I although 
the maximum levels are slightly lower. The constant stress layer is also thinner in 
Case 11. Again in Case 11, the outer edge of the constant stress layer is at 
approximately the same location as the - peak in m. 

The third component of shear stress, u‘w‘ is shown in figure 18 for completeness. 

The spanwise shear stress component, 
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FIGURE 12. Turbulence kinetic energy profiles : + , S 1 ; 0, S 3 ; 0, S 4 ; A, S 5 ; 
(a) Case I ;  ( b )  Case IT. 

The important shear stress components in attached boundary-layer flows are those 
in the plane of the wall, namely uIz.'l and m. Pierce & Ezekewe (1976) found that 
- x- and z-gradients of and 
v'w' even in a flow with very high levels of u'w'. Figure 18 shows that the u'w' stress 
remains small through the 4th station. The levels are considerably larger in the 
highly distorted flow at station 5. 

The ratio of the shear stress magnitude to  twice the turbulent kinetic energy 
(commonly called A,) is a useful quantity in two-dimensional boundary layers. 
A,-values are typically close to 0.15 even in distorted boundary layers. A ,  is useful 
in three-dimensional boundary layers if it is defined as 

were significantly - smaller than y-gradients of - 

where 

A, thus defined is invariant to coordinate rotations around the vertical (y) axis. 
Bradshaw & Pontikos (1985) observed a strong decrease in A ,  in their infinite-swept- 
wing experiment. The same effect is found in the present experiments as indicated 
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FIGURE 13. Profiles of p. Symbols as in figure 12. (a) Case I ;  (b) Case IT. 

in figure 19(a, b).  A ,  decreases monotonically in both cases except near the outer edge 
of the boundary layer where i t  remains approximately constant. The decrease in 
A ,  is more rapid in the more strongly skewed Case I. The implication is that a more 
strongly skewed boundary layer will exhibit lower levels of the shear stress/kinetic 
energy ratio. The experiments of Bradshaw & Pontikos (1985) and Baskaran & 
Bradshaw (1987b) follow the same trend. Their boundary layers are more weakly 
skewed than Case I1 and the decrease in A ,  are proportionately smaller with the lone 
exception of the final measurement station of Bradshaw & Pontikos which exhibits 
a very strong decrease in A,.  

Johnston (1976) and van den Berg (1982) examined the ratio of the spanwise to the 
streamwise eddy viscosity in their review articles. The ratio is commonly called N, 
and is defined as 

where y, is the angle of the shear stress vector in a coordinate system aligned with 
the free stream, yg is the angle of the velocity gradient vector in the free-stream 
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coordinate system, and yfs is the angle of the mean velocity vector in the free-stream 
coordinate system. 

The eddy viscosity ratio is plotted in figure 20 for stations 4 and 5 of both cases. 
The ratio is very small a t  stations further upstream. Also shown on figure 20 are data 
from Elsenaar & Boelsma (1974), Pontikos (1982), and Dechow & Felsch (1977). 
Scatter in the data is large because the calculation of the eddy viscosities requires 
differentiation of experimental data. However, the trends are clear ; rapidly turned 
experiments such as the present flows exhibit low values of the eddy viscosity ratio. 
The more slowly turned flows such as the two infinite-swept-wing flows illustrated on 
figure 20 exhibit much higher values of the ratio. 

Unfortunately, there are not enough data to postulate a quantitative relationship 
between the eddy viscosity ratio and the free-stream turning rate. To gain some 
insight a non-dimensional turning rate defined as the boundary-layer thickness 
divided by the radius of curvature of the free-stream streamline was estimated for 
each of the five experiments shown. The present two flows have non-dimensional 
turning rates of approximately 0.05. The turning rate varies strongly in the Dechow 
& Felsch experiment but the value is approximately 0.03 in the region of interest. 
The turning rate in the infinite-swept-wing experiments is approximately 0.01. The 
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FIQURE 15. Profiles of p. Symbols as in figure 12. ( a )  Case I; ( b )  Case 11. 

present sparse data indicate that the eddy viscosity ratio varies from values near 
1 a t  a turning rate of about 0.1 to a value around 0.2 for turning rates above 0.03. 
More experiments are needed to determine the values of the ratio a t  intermediate 
turning rates. 

The previous paragraphs lead one to the conclusion that a full stress equation 
model is needed to  accurately calculate three-dimensional boundary -layer flows. 
Such a model requires that all terms of the Reynolds stress transport equations must 
be either calculated or modelled. One particular set of terms that must be modelled 
are the triple velocity correlations which may be interpreted as the turbulent 
transport of the Reynolds stresses. All ten triple products were calculated from the 
raw data for Case I to  gain some insight into the required modelling. It should be 
emphasized that all terms of the Reynolds stress transport equations cannot be 
calculated from the present data. Only a selection of the plots and some derived 
quantities are shown here. The full set of triple products is available on request from 
the authors. 

Triple products are shown for the first four stations along the test streamline. 
Between stations 1 and 4, the triple products develop smoothly as a perturbation 
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from the two-dimensional boundary-layer state. Between stations 4 and 5, the triple 
products change rapidly as do the Reynolds-stress profiles. It is difficult to make any 
sensible interpretation of the data at station 5 ;  therefore they have been eliminated 
to  simplify the figures. The profiles of the four triple products involving only u- and 
v-velocity fluctuations were compared at the first station with the data of Murlis 
et al. (1982) measured in a two-dimensional zero-pressure-gradient flow. The 
agreement with both the profile shapes and the maximum values was good for all 
four quantiies. 

Following Bradshaw & Pontikos (1985), the first quantity shown (figure 21) is the 
y-component transport velocity for the turbulent kinetic energy, which is defined 
as 

- - -  
vq2 = (u’2w’+v’3fv’w’2)/q2. 

The transport velocity in the wake region remains nearly unchanged from S 1 to 
54, the scatter a t  the outer two points a t  the first station being caused by large 
uncertainty near the edge of the boundary layer. This result is in contrast to 
Bradshaw & Pontikos (1985) who observed a substantial decrease in the outer-layer 
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transport velocity. Closer to the wall, the transport velocity falls rapidly after the 
second station, becoming negative by station 4. This negative loop is similar to the 
behaviour observed in two-dimensional adverse-pressure-gradient boundary layers 
and is related to the positive gradient of q2 close to the wall. The overall profile 
development and the actual values of the transport velocity are in quite good 
agreement with the recent work of Baskaran & Bradshaw (1987b) in three- 
dimensional boundary layers with both concave and convex longitudinal curvature. 
One difference was that they observed some growth of the transport velocity in the 
outer layer. 

Figure 22 (u-c) presents the individual triple products forming the kinetic energy 
transport velocity. We see that the negative velocity a t  S 4 is due to a large negative 
value of the transport velocity of z. The transport velocity of? is nearly zero near 
the wall at the fourth station and the transport - velocity of 3 is everywhere small. 
As an aside, it has often been assumed that O'W'~ is equal to !j(v'uf2+d3) in a two- 
dimensional boundary layer. However, is much smaller than v" in a two- 
dimensional boundary layer, a fact that can be understood by simple kinematic 

_ _ _  
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arguments. - We envision two types of motion which will produce large instantaneous 
values of d w f 2  as sketched - in figure 23. The first ‘burst-like’ motion will produce a 
positive contribution to v’wf2 when averaged across the span. The second ‘sweep- 
like ’ motion produces a negative contribution. Such motions are - likely to occur with 
roughly equal probability, __ meaning that the average value of v fwf2  will be small. 

I n  the present c,ase, V’W’~ remains small throughout the flow development, making 
only a small contribution to the vertical transport of turbulent - kinetic energy. This 
is somewhat surprising in view of the development of vf2wf  to be discussed below. 
However, a similar slow development was observed by Baskaran & Bradshaw 
(1987 b ) .  
- The vertical transport of the two important shear-stress components, a and 
v’w’, are presented as raw triple products in figure 24(a, b). Figure 24(a) shows 

shear stress. The profiles a t  the first two 
stations show the typical behaviour found in two-dimensional - boundary layers. By 
station 3 there is a significant region of positive U‘V’~ (downward transport of 
-u’v’). This positive region near the wall becomes quite large by station 4. Again, 
this observation is in qualitative agreement with the gradient transport hypothesis. 

or the normal transport of the 

10 FLM 202 
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(a )  Case I ;  ( b )  Case 11. 

The rapid reduction in the shear stress near the wall leads to a substantial positive 
gradient of -u'v'. The triple-product profile is changed very little in the wake 
region. 

The vertical turbulent transport of the shear stress, namely m, starts out 
a t  the expected value of zero in the two-dimensional boundary - layer. - The transport 
grows rapidly until a t  the fourth station the profiles of d v f 2  and vf2wf are almost the 
same. This result is somewhat surprising because the secondary shear stress, 
grows so slowly and the gradients of are always small relative to gradients of the 
primary shear stress. Gradient transport models for the Reynolds stresses would 
obviously fail in this flow. It is interesting to note that while the spanwise eddy 
viscosity component is much smaller than the streamwise component, the gradient 
transport constant is much larger for the spanwise shear stress than for the 
streamwise. 

Not shown are the triple products that  relate to spanwise transport of the various 
stress components. Generally these terms are of the order of 5 of the corresponding 
vertical transport terms, indicating that the flow along the streamline approximates 
an infinite swept flow. The anomaly is in the transport of u'2. At the fourth ~ station, 
there are several points in the inner half of the boundary layer where d2w' is nearly 
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FIGURE 21. Vertical transport velocity of turbulent kinetic energy. M, S 1 ; o----Ul, S 2;  
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__ - 
as large as d2v‘. The d2w‘ triple product is almost exactly zero in the outer half of 
the boundary layer and is small a t  the other three stations. The large values of 

do ~ not necessarily imply that there is net spanwise transport of p. Similar 
levels of d 2 w ’  have also been observed in infinite swept flows. 

Finally of interest are the u- and w-component skewnesses, and p, shown in 
10-2 
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figures 25 and 26 respectively. The u-skewness starts off with a normal two- 
dimensional boundary-layer profile. Both the positive and negative extrema grow 
rapidly, increasing by at least a factor of 3 between stations 1 and 4. The w-skewness 
starts out quite close to zero as would be expected. It grows slowly and by the fourth 
station its maximum value is only a small fraction of u’3. This latest result is a clear 
indication that the turbulence structure is not in equilibrium with the mean velocity 
field. 

4. Comparison to Rotta T model 
Rotta (1979) introduced a family of turbulence models for application in 

complicated three-dimensional flows. The focus of the model is the behaviour of the 
pressure-strain terms of the Reynolds-stress transport equations. Inherent in his 
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FIQURE 23. Qualitative argument justifying low m. 

modelling of the pressure-strain terms is the assumption that the turbulence is 
isotropic with respect to a reference frame linked to the mean velocity vector. The 
resulting model is not invariant to coordinate translation ; however, its application 
to the present flow is straightforward. 

Rotta (1979) and later Abid & Schmitt (1985) incorporated the so-called Rotta T 
model into a mixing length model which will be compared to the present data. The 
essential feature of the model is an estimation of an eddy viscosity magnitude as 

where 1 = 0.0856tanh -- 
(0004815 

1 F =  I-- 
eY+/A+ ’ 

The mixing length is based on a standard form, reducing to 1 = ky near the wall, and 
the damping factor F is the Van Driest damping function. The Rotta model 
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distributes the eddy viscosity magnitude as a vector quantity to calculate the 
streamwise and cross-stream shear stresses : 

where 
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q =  u2+v, ( 2 . f )  

The parameter T is analogous to the eddy viscosity ratio N, discussed above. When 
T is 1.0, the model reduces to an istropic eddy viscosity. 

The model was applied to the measured mean velocity profiles for both cases. 
Sensitivity tests showed that the model was insensitive to the value of A+ so a 
constant value of A+ = 25.0 was chosen for all computations. The value of T was 
varied from 0.2 to 1 .O in different computations. As expected, the value T = 1 .O gave 
the best fit to the data a t  the initial station where the boundary layer is two- 
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dimensional. Figure 27 shows the measured and calculated shear-stress profiles at 
station 4 for Case I. The isotropic eddy viscosity calculations (T = 1.0) predicted 
values of m, which were too large by a factor of about 3. The secondary shear stress 
magnitude was much too large and the sign was wrong. There was a steady 
improvement in both profiles as T was decreased until relatively good agreement was 
achieved using T = 0.2. Similar results were found for Case 11. Thus, a value of T 
equal to the eddy viscosity ratio N,  defined above seems to  give a reasonable 
prediction of the shear stress profiles. T is exactly equal to  the eddy viscosity ratio 
in a coordinate system aligned with the local mean velocity but such a coordinate 
system was not used here. 

5. General discussion and conclusions 
The measurements presented here are in general agreement with previous 

measurements in infinite-swept-wing-type flows. The shear stress vector composed of 
the and 'UIWI components of the Reynolds stress tensor is seen to lag behind the 
strain rate vector and the ratio of the shear stress magnitude to  the turbulent kinetic 
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energy is seen to fall relative to two-dimensional boundary-layer levels. More 
detailed conclusions can be reached by comparing the present two data sets to 
previous work in infinite swept flows. 

The ratio of the spanwise eddy viscosity component to the streamwise component 
has a relatively simple behaviour in initially two-dimensional boundary layers when 
the free-stream flow direction turns monotonically. Comparison of several data sets 
shows the eddy viscosity ratio decreases with increasing rate of boundary-layer 
turning. Comparison of the two present data sets show that the ratio is independent 
of the amount of skewing between the free-stream flow and the wall, at least for 
rapidly turned cases. This later observation conflicts with the suggestion by Rotta 
(1979) that the eddy viscosity ratio depends primarily on the amount of skewing 
through the boundary layer. It should be noted that the above conclusions do not 
hold in flows approaching separation where the shear stress vector has been found to 
lead the strain rate vector. 

The decline in the shear stress/kinetic energy ratio, A ,  was found to be similar to 
that observed by Bradshaw & Pontikos (1985) if the last measurement station of 
their experiment is ignored. Comparing the two cases we see that A ,  decreases more 
rapidly in a more strongly skewed boundary layer even though the rate of free-stream 
turning is similar. In  contrast to some previous measurements, the drop in A ,  is 
caused by a very rapid drop in the shear stress magnitude. The turbulent kinetic 
energy remains relatively constant throughout the boundary-layer distortion. 

The simple eddy viscosity model proposed by Rotta (1979) was seen to work well 
in this simple flow when an appropriate value of T was selected. It seems likely that 
this T may be selected knowing only the rate of free-stream turning. Unfortunately, 
the application of Rotta’s model is not likely to be straightforward in more 
complicated flows. 

The present experiments do not provide sufficient data to evaluate turbulence 
closures based on the Reynolds stress transport equations. The apparent non- 
equilibrium nature of the boundary layer suggests that  such a model would be 
appropriate. However, the triple-product measurements indicate that modelling of 
turbulent transport of the Reynolds stresses will not be simple. 

There are a t  least two very significant questions that remain unanswered about 
even simple three-dimensional boundary layers. Perhaps the most important 
question is: what is the behaviour of the Reynolds stresses in the inner part of the 
boundary layer (say 0 < y+ < 50)? Stress gradients are important in this part of 
the boundary layer, but there are very few measurements available owing to 
the constraints of present instrumentation. New measurement techniques should be 
developed to probe this important region of the flow. 

The second question is: why does mean flow three-dimensionality cause such a 
rapid decrease in the shear stress/kinetic energy ratio ? I n  an early paper, Bradshaw 
(1971) made the plausible assertion that mean flow three-dimensionality should have 
little effect on turbulence since the turbulence itself is highly three-dimensional. 
Experiments have proven this assumption to be incorrect. Bradshaw & Pontikos 
(1985) later put forth the hypothesis that rapid decreases of shear stress are caused 
by the sideways tilting of the large eddies away from their preferred orientation. This 
conclusion is again plausible and is supported by measurements in boundary layers 
with embedded longitudinal vortices conducted at Stanford and elsewhere. 

Another possible explanation is the effect of the crossflow on the near-wall 
structure of a turbulent boundary layer. The peak in the production of shear stress 
occurs around y+ = 20 (see Moser & Moin 1987) and is associated with the bursting 
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event as described by Kim, Kline & Reynolds (1971). The mechanism causing the 
burst events is still unclear, but it seems obvious that hydrodynamic instability must 
play a role in the bursting process. Numerous investigators have suggested the 
presence of streamwise vortices in the near-wall region (see the brief review by 
Bawirzanski, Randolf & Eckelmann 1987). There is considerable disagreement 
among various investigators as to the exact nature of the vortices ; they may appear 
either as counter-rotating pairs or as single vortices. But there is general agreement 
that longitudinal vortices play a major role in the production of turbulence energy 
and shear stress. Blackwelder (1983) has taken this a step further by suggesting a 
close analogy between the bursting process and the growth and breakdown of the 
Gortler instability in laminar flow on a concave wall. 

If longitudinal vortices are indeed a key structure in the near-wall regions of 
turbulent boundary layers, we must be concerned with the interaction of such 
vortices with a crossflow. In  a two-dimensional boundary layer there is no mean 
longitudinal vorticity and positive and negative vortices must appear with equal 
probability. However, when a mean crossflow is present there is mean longitudinal 
vorticity distributed in a sheet. Such a sheet may roll-up into discrete vortices owing 
to the crossflow instability (cf. Gregory, Stuart & Walker 1955). Longitudinal 
vortices of opposite sign to the crossflow vorticity may be overwhelmed if the 
crossflow is large, leaving vortices of only a single sign. Thus, the crossflow may serve 
to stabilize the turbulence in the near-wall region. 

A crude smoke flow visualization was performed, roughly modelling the Case I 
flow. Smoke was seeped into the sublayer from a spanwise slot allowing observation 
of the development and breakdown of the sublayer streaks. The sublayer appeared 
to be more stable when the crossflow angle was large. These experiments, while not 
definitive, suggest a possibly fruitful avenue for future research. Such research would 
be simplified if the dynamics of the near-wall turbulence structure in two-dimensional 
boundary layers were well understood. 
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